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SUMMARY

New a posteriori error indicators based on edgewise slope-limiting are presented. The L2-norm is
employed to measure the error of the solution gradient in both global and element sense. A second-
order Newton–Cotes formula is utilized in order to decompose the local gradient error from a P1 �nite
element solution into a sum of edge contributions. The slope values at edge midpoints are interpolated
from the two adjacent vertices. Traditional techniques to recover (superconvergent) nodal gradient values
from consistent �nite element slopes are reviewed. The de�ciencies of standard smoothing procedures—
L2-projection and the Zienkiewicz–Zhu patch recovery—as applied to nonsmooth solutions are illustrated
for simple academic con�gurations. The recovered gradient values are corrected by applying a slope
limiter edge-by-edge so as to satisfy geometric constraints. The direct computation of slopes at edge
midpoints by means of limited averaging of adjacent gradient values is proposed as an inexpensive
alternative. Numerical tests for various solution pro�les in one and two space dimensions are presented
to demonstrate the potential of this postprocessing procedure as an error indicator. Finally, it is used to
perform adaptive mesh re�nement for compressible inviscid �ow simulations. Copyright ? 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Progress in computer performance and the improvement of numerical methods for CFD have
enabled analysts to simulate more and more challenging problems for which no or at least little
a priori knowledge of the solution structure is available. This increase of complexity has made
it rather di�cult to guarantee the reliability of the numerical solution. The recent trend for
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a posteriori error estimation has provided tools with which to verify that the model equation
is solved accurately enough and=or to steer mesh adaptation. Starting with the pioneering work
of Babu�ska and Rheinboldt [1] in the late seventies of the last century, theories and methods
of a posteriori error estimation have been developed extensively [2–4]. It is noteworthy, that
most of the research has focused on elliptic and parabolic linear problems in the framework
of �nite element approximations while for nonlinear hyperbolic partial di�erential equations
the theory of a posteriori error estimation and adaptivity has remained in its infancy.
In a series of recent publications [5–9], a family of high-resolution schemes subsumed

under the algebraic �ux correction (AFC) paradigm was developed. In essence, a linear high
order discretization, e.g. standard Galerkin scheme, is rendered local extremum diminishing
(LED) by a conservative elimination of negative o�-diagonal entries from the discrete transport
operator so as to end up with a nonoscillatory low-order approximation. In order to recover
the high accuracy of the original scheme a limited amount of compensating antidi�usion is
added in regions of smooth solutions. The interested reader is referred to the aforementioned
publications. The promising results obtained for scalar conservation laws as well as for the
simulation of compressible inviscid and incompressible viscous �ows on �xed unstructured
grids have led us to combine �ux limiting with an adaptive mesh re�nement procedure in
order to increase the resolving power of the algorithm. In addition, the computational cost
can be drastically reduced if local mesh coarsening is employed in regions where the �ow
�eld is almost constant or its variance from node to node is quite small.
A common approach to the adaptive treatment of hyperbolic problems is based in Richard-

son extrapolation which is used to estimate the truncation error of the numerical scheme and
equidistribute the error by means of local grid re�nement [10–12]. In its original form, this
technique requires the a priori knowledge of the order of approximation p. Roache [13] sug-
gested a three grid re�nement study to estimate p numerically. For high-resolution schemes
based on �ux=slope limiters, the approximation order varies locally such that special care must
be taken [14]. The drawback of extrapolation-based error indicators is that this approach relies
on the local smoothness of the solutions which cannot be guaranteed for hyperbolic systems of
equations. Moreover, its entire relation to structured grids compromises the �exibility o�ered
by �nite elements which are applicable to unstructured triangular and=or quadrilateral grids.
As an alternative, either a smoothness sensor or the correction factors produced by the

�ux limiter can be used to steer grid adaptivity [15]. In order to prevent re�nement due to
microscopic jitters in the solution, also the curvature was taken into account. This approach
was adopted to simulate Sod’s transient shock tube problem in one dimension by means of
�nite di�erences. However, the employed indicator strongly depends on the properties of the
limiter and is based solely on the error due to the discretization of convective terms. Hence,
it is incapable of detecting insu�cient grid resolution in regions where no �ux limiting is
required.
Recovery-based error estimators were �rst suggested by Zienkiewicz and Zhu [16], as early

as in 1987. The ‘simple error estimator for practical engineering analysis’ presented for linear
elastic problems was motivated by the observation that piecewise continuous �nite element
solutions generally exhibit discontinuous gradients at the element interfaces. Provided the
‘true solution is su�ciently smooth’ [17], these jumps in the gradient serve as an indicator
for errors in the numerical solution. Several methods for recovering improved gradients have
been proposed in the literature. Some of them, including the well-known Zienkiewicz–Zhu
patch recovery technique [18, 19], rely on the superconvergence property of the �nite element
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method at certain points. Their ease of implementation, robustness, and accuracy in many
situations have boosted the popularity of recovery-based adaptive schemes especially in the
engineering community. However, problems have been reported [20] applying this methodol-
ogy to compressible �ows using classical �nite element or �nite volume schemes. In essence,
shock waves are typically smeared across several elements and captured as linear approxi-
mation with steep gradients. As a consequence, the jumps across element interfaces are very
small and the error predicted by the recovery procedure tends to zero at the location of the
‘discontinuity’ [21]. Hence, mesh re�nement is forced in the vicinity of the shock but not at
its core. Yet, it is questionable if this phenomenon can be attributed to the error indicator
based on gradient reconstruction or to the overly di�usive discretization scheme employed.
The reformulation of the element gradient error in terms of edge contributions allows for

the application of slope limiting techniques which have been originally designed for a special
treatment of convective terms ∇ · (vu). Let us replace the velocity vector by the unit vector
ei in ith spatial direction one after another. Then the task of �nding a good approximation to
the convective term reduces to that of computing the ith component of the nodal gradient and
vice versa. Based on our experience with algebraic �ux correction schemes we derived two
di�erent approaches for the evaluation of edge gradients by means of slope limiting schemes.
The gradient values at the edge midpoints can be directly computed as a limited average of
consistent slopes adjacent to the corresponding edge. Moreover, standard recovery techniques
may be employed to acquire smoothed nodal gradients from which provisional slopes can be
interpolated along the edge. A slope limiter is applied edge-by-edge in order to adjust the
intermediate values to the natural bounds set up by the constant gradient values from adjacent
cells. This idea can be traced back to the concept of �ux corrected transport (FCT) [5, 6],
whereby a �ux limiter was designed so as to restrict the high-order solution on the basis of
upper and lower bounds stemming from an intermediate positivity-preserving (PP) solution.

2. A POSTERIORI ERROR INDICATORS

As a model problem, consider a partial di�erential equation of the following form:

Lu=f in � (1)

where the (possibly nonlinear) di�erential operator L may consist of both spatial and time
derivatives. The variational form of (1) is derived by �rst multiplying the residual of this
equation by a weighting function w and integrating over the domain �∫

�
w[Lu− f] dx=0 (2)

Let the exact solution u be approximated by means of �nite elements

u ≈ uh=
∑
j
uj’j (3)

where ’j denotes the basis functions spanning the �nite-dimensional subspace.
Any solution to Equation (2) represents an approximation to the original problem (1) involv-

ing all sorts of numerical errors, such as: integration errors, round-o� errors, implementation
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errors (!), algorithmic errors, discretization errors, etc. In what follows, we shall concentrate
on spatial errors due to the �nite element discretization.
The numerical error relates the exact solution u of the continuous problem (1) to the nodal

values uh of the �nite element approximation satisfying Equation (2)

e= u− uh (4)

It is well known, that obtaining an approximation to e yields a problem as complex as the one
for u. Thus the main objective of a posteriori error estimation is not to get an approximation
of the error de�ned in (4), but to estimate its magnitude in a suitable norm.
Instead of measuring the error of the solution, for some applications, e.g. convection-

dominated �ows, it may be useful to consider the error of the gradient. Let

e=� − �h (5)

denote the vector-valued error in the gradient computed directly from the solution as

�h=∇uh=
∑
j
uj∇’j (6)

In what follows, we shall refer to �h as the low-order gradient. The aim of recovery-based
estimators, introduced by Zienkiewicz and Zhu [16], is to replace the exact value �, which
in general is not known, by a smoothed gradient �eld �̂h (to be de�ned below), such that

e ≈ ê= �̂h − �h (7)

gives a good approximation to the exact error de�ned in (5).
In general, pointwise error estimates are di�cult to obtain, so integral measures are typically

employed in the �nite element framework. Di�erent norms show di�erent aspects of the error,
and for convection-dominated problems, the question of choosing an appropriate norm has not
been completely answered. A widely used integral measure is the standard L2-norm

‖ê‖L2 =
(∫

�
êTê dx

)1=2
(8)

Although the above integral measure is de�ned in the whole domain �, its square can be
obtained by summing all element contributions over the triangulation Th of �. Thus

‖ê‖2L2 =
∑
T∈Th

‖ê‖2L2(T ) (9)

where subscript L2(T ) refers to the local L2-norm computed on element T ∈ Th.
Since we employ piecewise linear (P1) trial functions ’ for the approximation of the

�nite element solution, the discrete gradient �h is constant on each element and exhibits
discontinuous jumps at element interfaces=vertices. Hence, the improved slopes should be at
least piecewise linear so as to provide a better approximation to the exact gradient. To this
end, it su�ces to specify slope values at all midpoints of edges, i.e. xij := 1

2 (xi+xj), to obtain
a smoothed quantity �̂h that varies linearly in each T ∈ Th and is allowed to exhibit jumps
across interelement boundaries. This approach can be seen as determining the nodal values
for a nonconforming approximation of �̂h by means of linear Crouzeix–Raviart (P̃1) �nite
elements for which the local degrees of freedom are located at edge midpoints. For bilinear
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(Q1) �nite elements used on quadrilateral meshes, the gradient approximation can be based
on the nonconforming Rannacher–Turek element (Q̃1).
In two space dimensions, the following second-order accurate Newton–Cotes quadrature

rule may be used to compute the element contributions to the global gradient error∫
T
êTê dx=

|T |
3

∑
ij
êTij êij (10)

where |T | stands for the area of the triangle and the summation extends over the midpoints of
the three surrounding edges. Let us single out the contribution of the edge ĩj to Equation (10)

êTij êij=[�̂ij − �ij]T[�̂ij − �ij] (11)

Here, �ij :=�h(xij) is constant on the whole element and �̂ij := �̂h(xij) varies linearly along
the edge. It remains to devise a procedure for constructing improved gradient values �̂ij.

3. GRADIENT RECONSTRUCTION

Our �rst approach to obtaining a smoothed edge gradient is largely inspired by slope limiting
techniques employed in the context of high-resolution �nite volume schemes and later carried
over to discontinuous Galerkin �nite element methods [22]. Various attempts to extend slope
limiting to multidimensions can be found in the literature. In essence, the task is to reconstruct
the slopes at interelement boundaries where discrete solution values exhibit jumps. However,
geometric constraints need to be satis�ed in order to guarantee that the numerical solution is
free of nonphysical oscillations which would be generated otherwise. To this end, the value
of the recovered gradient is taken as a limited average of constant slopes adjacent to edge ĩj.
As an alternative, a provisional gradient at the midpoint of edge ĩj can be linearly interpo-

lated from nodal values: �̂ij= 1
2(�̂i + �̂j). Sophisticated projection or discrete patch recovery

techniques can be employed to compute smoothed slopes at the element vertices. However,
the resulting edge gradient may violate the natural bounds given by the �rst-order slopes �h
of the two adjacent cells. This can be recti�ed by applying a slope limiter edge-by-edge so
as to satisfy geometric constraints.

3.1. Limited gradient averaging

For simplicity, we will discuss the basic ideas of slope-limited �nite volume methods in
one space dimension. Let the interval I =

⋃m
j=1 Ij be partitioned into a set of �nite volumes

Ij=(xj−1=2; xj+1=2) and let uj denote the mean value of some scalar quantity u on cell Ij. The
task is to construct a piecewise linear approximate solution

ũh(x)= uj + (x − xj)�j ∀x ∈ Ij (12)

where �j denotes an approximation of the solution gradient on the jth cell. In the simplest
case, one-sided or centred slopes have been employed to obtain �rst- and second-order accurate
schemes, respectively. However, oscillations are quite likely to appear in the second case while
�rst-order schemes lead to rather di�usive solution pro�les. For a numerical scheme to be
nonoscillatory, it should possess certain properties, e.g. be monotone, positivity preserving
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or total variation=local extremum diminishing. This can be accomplished by replacing the
approximate slope value �j in Equation (12) by its limited counterpart.
For the construction of LED and TVD schemes, Jameson utilized limited average operators

L(a; b) which are characterized by the following properties [23]:

P1. L(a; b)=L(b; a),
P2. L(ca; cb)= cL(a; b),
P3. L(a; a)= a,
P4. L(a; b)=0 if ab60.

While the �rst three conditions are natural properties of an average, P4 is to be enforced
by means of limiting. Jameson demonstrated that a variety of standard TVD limiters can be
written in such a form. Let the modi�ed sign function be given by

S(a; b)=
sign(a) + sign(b)

2
(13)

which equals zero for ab60 and returns the common sign of a and b otherwise. Then the
most widely used two parameter limiters for TVD schemes can be written as:

1. minmod: L(a; b)=S(a; b)min{|a|; |b|}.
2. maxmod: L(a; b)=S(a; b)max{|a|; |b|}.
3. MC: L(a; b)=S(a; b)min{ |a+b|

2 ; 2|a|; 2|b|}.
4. superbee: L(a; b)=S(a; b)max{min{2|a|; |b|};min{|a|; 2|b|}}.

In light of the above, the limited counterpart of �j in Equation (12) can be computed as
follows:

�j :=L

(
uj − uj−1
�j

;
uj+1 − uj
�j

)
(14)

where the cellwidth of the jth subinterval is denoted by �j= xj+1=2 − xj−1=2.
Let us return to our original task that requires the computation of the solution slopes at the

midpoint of edge ĩj so as to estimate its contribution (11) to the local error. Let �+ij and �
−
ij

denote the piecewise constant gradient values evaluated on the two elements to the left and
to the right of edge ĩj, respectively. Then, the auxiliary quantities

�
max
min
ij =

max
min

{�+ij ; �−
ij } (15)

provide excellent lower and upper bounds that should be satis�ed by any gradient value along
the edge. Moreover, each of the limited average operators presented above can be utilized to
obtain a usable edge gradient that can be computed e�ciently as follows:

�̂ij=L(�+ij ; �
−
ij ) (16)

For all limiter functions L presented above, the recovered gradient value equals zero if
�+ij �

−
ij60 and satis�es the following inequality otherwise:

�minij 6�̂ij6�
max
ij (17)

If the upper and lower bounds have di�erent signs, this indicates that the approximate solution
attains a local extremum across the edge. Hence, property P4 of limited average operators
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acts as a discrete analog to the necessary condition in the continuous case which requires
the derivative to be zero. Clearly, the recovered gradient (16) depends on the choice of the
limiter function to some extent. In the authors’ experience, the monotonized centred (MC)
limiter seems to be a safe choice as it tries to select the standard average whenever possible
without violating the natural bounds (15) provided by the low-order slopes.

3.2. Nodal gradient recovery

The idea of using recovery techniques to obtain improved gradient=stress values exhibits quite
a long tradition in �nite elements (cf. Oden et al. [24, 25] or Hinton and Campbell [26]).
To the authors’ best knowledge, Cantin et al. [27] were the �rst to consider the so-called
averaging projection schemes which have also been utilized by Zienkiewicz and Zhu [16] in
their original paper on recovery-based error estimation. Let the smoothed gradient be
approximated by

�̂=
∑
j
�̂j�j (18)

where the coe�cients �̂j are obtained by solving the discrete problem∫
�
�i(�̂ − �h) dx=0 (19)

Note that the element shape functions used to construct the basis functions �i onto which
�h is projected may be di�erent from those employed in the �nite element approximation
(3). A detailed analysis of projection-based error estimators by Ainsworth et al. [17] reveals
that the corresponding polynomial degrees should satisfy deg�¿deg’. Like in an earlier
publication by Oden and Brauchli [24], they conclude that the recovery procedure utilized in
Reference [16], which corresponds to choosing �≡’ in the equations above, ‘is not only
e�ective, but also the most economical’ one. Substitution of Equation (18) into (19) yields

∑
j

[∫
�
�i�j dx

]
�̂j − ∑

j

[∫
�
�i∇’j dx

]
uj=0 ∀i (20)

Thus, the smoothed gradient can be recovered by solving the linear algebraic system

MC�̂=Cu (21)

where MC = {mij} denotes the consistent mass matrix and C= {cij} is the matrix of discretized
spatial derivatives. The coe�cients of these matrices are given by

mij=
∫
�
�i�j dx; cij=

∫
�
�i∇’j dx (22)

For a �xed mesh, the coe�cients mij and cij remain unchanged throughout the simulation
and, consequently, need to be evaluated just once during the initialization step and each time
the grid has been modi�ed. If �≡’, the coe�cients de�ned in (22) coincide with the matrix
entries of the �nite element approximation and, hence, are available at no additional cost.
An edge-by-edge assembly of the right-hand side is also feasible

(Cu)i=
∑
j �=i
cij(uj − ui) (23)
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since C features the zero row sum property
∑

j cij=0 as long as the sum of the basis functions
equals one. Note that for �≡’, the algebraic system (21) can also be obtained by applying
the standard Galerkin approximation to the weak form of the continuous problem �=∇u.
Thus, projection schemes of the form (18)–(19) are called variational recovery [28] and can
be applied repeatedly so as to determine an approximation to a higher-order derivative.
The solution to the algebraic system (21) can be computed iteratively by successive

approximation preconditioned by the lumped mass matrix ML= {mi}, where mi=
∑

j mij

�̂(m+1) = �̂(m) +M−1
L [Cu−MC�̂

(m)]; m=0; 1; 2; : : : (24)

If mass lumping is applied directly to Equation (21), the values of the projected gradient can
be determined at each node from the explicit formula

�̂i=
1
mi

∑
j �=i
cij(uj − ui) (25)

Over the years, a more accurate patch recovery technique was introduced by Zienkiewicz and
Zhu [18, 19], which relies on the superconvergence property of the �nite element solution at
some exceptional, yet a priori known, points. Let the smoothed gradient be represented in
terms of a polynomial expansion of the form

�̂=p(x) a (26)

where for two space dimensions p(x)= [1; x; y; x2; : : : ; xk ; xk−1y; : : : ; xyk−1; yk] contains the
monomials of degree k at most. Since each vertex is surrounded by a patch of elements
sharing this node, the vector of coe�cients a=[a1; a2; : : : ; am]T with m=(k +1)(k +2)=2 can
be computed from a discrete least square �t to the set Si of sampling points xj [18]. From
that it follows, that the coe�cient vector a is the solution to the linear system

Mpa= f (27)

where the local matrix Mp and the right-hand side vector f are given by

Mp=
∑
j∈Si

p(xj)Tp(xj); f =
∑
j∈Si

p(xj)T �h(xj) (28)

For linear triangles, a=[a1; a2; a3]T, p=[1; x; y] and the gradient is sampled at the centroid
xj of each triangle in the patch. In this case the lumped L2-projection yields almost the same
results on uniform grids but only patch recovery retains its superconvergence property if the
grid gets distorted which in general makes (26) superior to (25). However, the solvability of
the linear system (27) strongly depends on the relation rank Mp=m.
Since the advent of the superconvergent patch recovery (SPR) technique [18] its super-

and even ultraconvergence property has been analysed extensively in the literature [29–31].
This paved the way to the development of the so-called polynomial preserving (PPR) gradient
recovery schemes [32]. While in SPR methods a Pk-polynomial is best �tted to �h directly,
PPR schemes compute the nodal quantity p∈Pk+1 as a polynomial approximation to uh
and apply the derivative operator afterwards (�̂h=∇p). In order to ensure the solvability of
the linear system (27), the patch of surrounding elements needs to be enlarged recursively.
Recently, Zhang et al. introduced a ‘meshless’ gradient recovery method [33] in which the
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idea of element patches is abandoned in favour of spherical patches which are expanded
adaptively so as to satisfy a solvability condition.
The ease of implementation, generality and ability to produce quite accurate estimators

boosted the popularity of recovery-based techniques especially in the engineering community.
However, any of the above-mentioned strategies to compute a high-order gradient from the
�nite element solution is quite likely to fail either for steep gradients or in case the solution
exhibits jumps as it is often the case in compressible �ow computations featuring shock waves
and contact discontinuities. This can be attributed to the fact, that the consistent L2-projection
scheme tends to produce nonphysical oscillations in the vicinity of jumps whereas both its
lumped counterpart and the patch recovery are overly di�usive. This drawback of the standard
procedures can be recti�ed by combining both imperfect methods as explained below.

3.3. Edgewise slope limiting

No matter if patch recovery or averaging projection schemes are employed, the nodal gradient
values result from an averaging process over an unsettled number of surrounding element
gradients which may strongly vary in magnitude and even possess di�erent signs. Thus, it
is very di�cult to �nd admissible upper and lower bounds to be imposed on the recovered
nodal gradient. Let us recall, that in order to compute the element gradient error (10) we
have to sum the contributions (11) of the adjacent edges. In the interior, each edge can be
associated with exactly two triangles sharing it. Hence, the auxiliary quantities de�ned in (15)
constitute natural upper and lower bounds for the �nal edge gradient, such that

�minij 6�̂ij6�
max
ij (29)

In the �rst step, provisional edge gradient values are predicted at the midpoint of edges which
are located in the overlap of two element patches. Hence, the intermediate edge slopes can
easily be computed by linear interpolation of nodal values resulting from any of the above
nodal recovery schemes, i.e. �̂ij= 1

2(�̂i+ �̂j). As an alternative, patch recovery can be used to
obtain the midpoint gradient values directly. In the next step, the provisional edge gradients
are corrected subject to the upper and lower bounds (15)

�̂∗
ij= max{�minij ;min{�̂ij; �maxij }} (30)

The edgewise slope-limiting procedure is illustrated in Figure 1 for an interior edge. In one
space dimension, Zienkiewicz and Zhu observed, that ‘the recovered derivative nodal values
[computed by either lumped L2-projection or patch recovery] for linear elements are located
between the discontinuity of the �nite element solution’ [18]. The task of our edgewise slope
limiter is to enforce this property in the sense of a multidimensional extension. The generality
of this concept allows for the application of any nodal gradient recovery procedure proposed
in the literature or even a combination thereof.
Let us consider the situation when the upper and lower bounds (15) have di�erent signs.

This indicates that the approximate solution attains a local minimum=maximum across the
edge. In the continuous case, the necessary condition of an extremum requires that the corre-
sponding derivatives be equal to zero. For the recovered gradient to satisfy a discrete analog,
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Figure 1. Edgewise slope-limited gradient recovery for internal edges.

Figure 2. Boundary treatment: nodal vs. edgewise recovery.

it makes sense to modify Equation (30) as follows:

�̂∗
ij=S(�minij ; �

max
ij ) |max{�minij ;min{�̂ij; �maxij }}| (31)

This adjustment corresponds to property P4 of limited average operators (see above).
Boundary treatment: In the framework of nodal recovery procedures, the gradient values

at boundary vertices can be reconstructed from specially designed boundary patches. However
for a corner node, say ‘ ’, an insu�cient number of elements denoted by ‘�’ can render
the matrix of system (27) singular as illustrated in Figure 2 (left). Zienkiewicz and Zhu
recommend always recovering the nodal values at the boundary from an interior patch recovery
point ‘◦’ [18] which for unstructured triangulations is far from being unique.
In the context of our edge-based formulation, it is natural to adopt the constant slope value

from the adjacent element, say ‘�’, also at the midpoint ‘ ’ of a boundary edge. As an
alternative, the gradient value of a boundary edge can be recovered from the unique patch
assembly point ‘◦’ opposite to it as depicted in Figure 2 (right).
The same applies to an interior edge, say ‘	’, that belongs to a triangle with three boundary

nodes. Then the edge slope value can be recovered from the uniquely de�ned patch assembly
point ‘◦’ connected to the adjacent ‘interior’ triangle.
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3.4. Summary of reconstruction schemes

Let us summarize the di�erent approaches for recovering an improved gradient value �̂ij at
the midpoint of edge ĩj and introduce abbreviated forms for each of there techniques.
Improved gradient values �̂L at edge midpoints can be directly computed from formula

(16) as the limited average of the constant slopes �±
ij to the left and to the right of edge ĩj.

As an alternative, traditional recovery procedures can be employed to predict (nodal) gradi-
ent values �̂i from which slopes at midpoints of edges can be computed by linear interpolation
�̂ij= 1

2(�̂i + �̂j). In what follows, �̂MC , �̂ML and �̂ZZ will denote gradient values which result
from consistent (24) or lumped (25) L2-projection schemes and the ZZ patch recovery tech-
nique (26), respectively. Their corrected counterparts which satisfy the inequalities in (29)
are indicated by superscript ∗ and computed by the slope limiter (30).

4. MESH ADAPTIVITY

For CFD problems, the �ow pattern is governed by the propagation and interaction of localized
structures which dominate the error to a large extent. This observation suggests adaptive mesh
re�nement as a useful tool for the treatment of hyperbolic conservation laws. First, disturbances
are propagated along characteristics with �nite speed such that adaptive mesh re�nement is
most likely to improve the solution locally without a�ecting its global behaviour. Second, the
nonlinear nature of the equations at hand gives rise to the formation of discontinuities which
call for the use of nonoscillatory approximations. It follows, that local grid re�nement would
improve the resolution of shocks signi�cantly. These peculiarities of hyperbolic problems must
be accounted for in the process of mesh adaptation, since they a�ect both the selection of
elements to be re�ned and coarsened and the choice of re�nement strategies.

4.1. Adaptation strategy

In adaptive solution procedures for steady state simulations of hyperbolic systems of equa-
tions, one typically starts with a moderately coarse grid on which an initial solution can be
computed e�ciently. Nevertheless, the mesh needs to be �ne enough to capture all essential
�ow features so as to enable the error indicator to detect ‘imperfect’ regions. As pointed out in
the introduction, the misfortune experienced with applying the standard Zienkiewicz–Zhu error
estimator to an adaptive shock wave simulation [21] may be attributed to the hapless interplay
of overly di�usive spatial discretization schemes applied on insu�ciently �ne triangulations.
In other words, the arti�cial dissipation introduced by the numerical method overstrained the
resolution facility of the employed coarse grid and misled the error indicator.
For all examples presented in this article, the GiD mesh generator [34] which is based on the

advancing front concept is used to create the coarse grid for geometric multigrid schemes [35].
A hierarchical mesh data structure for the initial grid is generated by successive subdivision
of each triangle of the coarse grid into four subelements of equal size. To speed up the
steady state convergence of the initial solution, nested iterations [36] are used. The idea is
to recursively compute a provisional solution on a coarser mesh and interpolate it to the
next �ner level so as to obtain a reasonable initial guess. This procedure, also referred to
as full multigrid (FMG) [37], has proven to be quite expedient for the simulation of steady
compressible �ows.
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The relative error of the density has been employed to monitor steady state convergence [38].
Following Reference [39], the �ow solver is stopped if this error falls below the square root of
the prescribed tolerance, that is, intermediate solutions are required to be only ‘half-converged’.
The (more expensive) computation of a fully converged solution is required on the �nal grid.
In the next step, cells are �agged for local re�nement or coarsening according to some adap-

tation parameters. A common practice is to prescribe the tolerance for the relative percentage
error of the solution and the gradient, respectively,

� :=
‖e‖L2

‖∇u‖L2
6�ref (32)

Since neither the exact slope values nor the true error are known, the best approximation
available is utilized instead. From (9) it follows that the global L2-norm can be decomposed
into element contributions. Moreover, let us assume that the relative error is equally distributed
between cells. Then the condition �6�ref (cf. (32)) can be rewritten as follows:

‖ê‖L2(T )6�ref
[

‖�h‖2L2 + ‖ê‖2L2
|Th|

]1=2
=: eref (33)

where |Th| denotes the number of elements which constitute the current triangulation Th.
A similar estimate in terms of the solution error is formulated in Reference [16]. Given the

ratio

�T =
‖ê‖L2(T )
eref

(34)

an element T is marked for re�nement if �T¿1. At the same time, the cells to be coarsened
can be determined by inverting all inequalities and replacing �ref by some �crs��ref .
A suitable re�nement algorithm (see below) is employed to locally adapt the mesh in

regions of underresolved wave patterns and the current solution is projected onto the re�ned
mesh. If mesh coarsening should be performed in regions of uniform �ow the use of a
conservative projection scheme such as the one presented in Reference [40] is recommended
at least for transient problems. Once the adapted mesh has been created, the solution is
marched to the stationary limit and the whole process starts again until the �nal mesh has
been reached. To this end, one or more ‘mesh convergence’ criteria need to be de�ned.
The simplest approach for steady state problems is to prescribe the maximum number of
re�nement levels a priori. If a quantitative analysis of the error is available it is advisable to
stop the adaptation process if the global error has reached some tolerance. As an alternative,
the (relative) changes of the solutions on two successive grids can be used to terminate the
simulation if the di�erence is su�ciently small.

4.2. Grid re�nement techniques

The grid re�nement strategy follows the algorithm for regular local mesh re�nement proposed
by Bank et al. [41]. In a loop over elements, cells which are marked for re�nement by
the error indicator are subdivided into four similar triangles. This so-called ‘red’ re�nement
is applied iteratively so as to eliminate adjacent cells with two or three hanging nodes. In
order to restore global regularity of the triangulation ‘green’ re�nement is applied afterwards
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to all 1-irregular [42] elements, that is, the midpoints of bisected edges are connected to the
opposite vertices. Prior to the next adaptation cycle, all edges which have been introduced due
to green re�nement can=should be removed to retain the shape regularity of the successively
re�ned grids. The regular local mesh re�nement algorithm for triangles and quadrilaterals is
dealt with in Reference [41] including a detailed description of e�cient data structures. The
red–green re�nement strategy has been employed for all simulation results presented in this
publication.
An alternative class of conforming mesh re�nement algorithms for triangular=tetrahedral

grids is based on edge bisection and was originally introduced by Rivara [43]. For each
element �agged for re�nement, a new node is inserted at the midpoint of the longest edge
and connected to the opposite vertex. The bisection process continues recursively for all
adjacent triangles sharing a hanging node with the re�ned element until all nonconforming
vertices have been eliminated. A nonrecursive variant has been suggested in Reference [44]
where the longest-edge propagation path is computed a priori and a backward algorithm is
employed to perform edge bisection. Some geometric properties of these methods can be
found in Reference [45]. In fact, the classical longest-edge bisection approach is probably
not the best choice as far as algebraic �ux correction (AFC) [8, 9] is concerned which may
be explained as follows. For each element that needs to be re�ned due to accuracy rea-
sons, the propagation path which may extend far away from the originating triangle depends
solely on the mesh geometry and does not account for the solution behaviour. Recall that
our AFC methodology [8, 9] entirely rests on an edge-based formulation. The amount of
arti�cial dissipation that outlasts the �ux limiting procedure depends on the interplay of in-
ternodal �uxes which are proportional to the edgewise solution di�erence multiplied by some
(anti-)di�usion coe�cient.
If the solution variation along the longest edge is small or even negligible then bisection

will hardly facilitate the task of the �ux limiter and neither will it improve the resolution
appreciably. Instead, it is worthwhile to re�ne the edge with the largest solution variation or
the largest antidi�usive �ux. Consider the situation in which this �ux into one node, say i,
cannot be balanced by di�usive �uxes from neighbouring nodes so that its magnitude needs
to be drastically reduced. In this case, edge ĩj should be bisected, unless this would entail
a reduction of the correction factor for node j. In a forthcoming paper, this algebraic edge
partition approach which is tailored to the peculiarities of AFC schemes [8] will be embedded
into a more theoretical framework and its numerical performance will be analysed.

4.3. Grid coarsening techniques

Mesh coarsening is applied in regions of su�ciently uniform �ow where the relative gradient
error (33) is below some prescribed tolerance �crs. For all simulations presented in this article,
the vertex removal procedure described in Reference [40] has been employed. In essence,
edge-swapping is performed repeatedly so as to ‘isolate’ the vertex to be erased. The iteration
continues until the corresponding node is connected to just three triangles and can be safely
removed. If the vertex to be deleted resides on the boundary it is �rst ‘moved’ into the interior
by introducing an arti�cial boundary element before the standard procedure can be applied.
In the context of algebraic �ux correction methods which rely on an edge-based data

structure, edge collapse techniques [46] may be a promising alternative. This technique has
been extensively discussed in computer graphics literature (cf. [47]). The basic idea is to
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contract edges and consolidate the two adjacent nodes. In general, di�erent strategies [48] exist
for positioning the newly created vertex which can be combined to improve the geometric
quality of the resulting mesh. For an AFC scheme, the new vertices should be positioned so
as to improve the algebraic properties of the discretization.

4.4. Grid improvement techniques

Typically, edge-swapping is employed as a postprocessing step to improve the mesh quality
with respect to some geometric measures, e.g. the normalized shape regularity functional [49]

q(T )= 4
√
3|T |

/ ∑
ij
‘2ij (35)

Here, ‘ij denotes the length of the edge from node i to node j. This is where algebraic aspects
come into play. For interior edges, the sum of opposite angles should not exceed � so as to
guarantee that the coe�cient matrix resulting from a piecewise linear Galerkin �nite element
approximation of the Laplacian operator is an M -matrix [50]. For boundary edges the opposite
angle is required to be less than �=2. Edge-swapping can be equipped with algebraic quality
measures of such kind so as to guarantee that all o�-diagonal entries of the discrete di�usion
operator remain nonnegative.
In addition, ‘smart’ Laplacian or optimization-based mesh smoothing [51] can be driven by

algebraic quality measures in order to ‘minimize’ the amount of required arti�cial di�usion.
The knowledge about suboptimal regions of the computational mesh is already ‘hidden’ in the
matrix coe�cients, and only needs to be retrieved. In other words, the �ux limiter not only
prevents the birth and growth of oscillations on a given (suboptimal) mesh but also provides
valuable information for further mesh improvement.

4.5. Summary of the algorithm

Starting from an initial coarse grid that is supposed to be �ne enough to capture essential
�ow features, the algorithmic steps of our adaptive AFC schemes are as follows:

1. Generate the required adjacency lists for nodes and elements and initialize the edge-based
data structure. Assemble the constant coe�cient matrices resulting from the Galerkin
discretization of the variational problem (2) which resemble the ones in (22).

2. Compute the numerical solution on the current mesh

• Enforce the positivity constraint by means of algebraic �ux correction [8].
• Solve the resulting nonlinear system using an iterative defect correction procedure.
• Compute the relative error of some indicator variable, i.e. density, to check if the
solution has ‘half-converged’. Otherwise, continue �ux=defect correction.

3. Evalute the consistent gradient (6) and recover improved slope values for each edge
either as a limited average of constant slopes (16) or by means of edgewise slope
limiting (30)=(31) applied to the average of smoothed nodal gradients (cf. (24)–(25) or
(26)–(27)).

4. Assemble the L2-norm of the element gradient error (10) from the edge contributions
(11) and re�ne=coarsen all triangles according to conditions (33)–(34).
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5. Optionally: Apply edge-swapping or other grid improving methods in order to increase
the mesh quality with respect to geometric or algebraic quality measures.

6. If the �nal=‘converged’ grid has been constructed, proceed to steps 1–2 until the fully
converged solution is obtained. Otherwise, continue with steps 1–6.

5. NUMERICAL EXAMPLES

In order to demonstrate the behaviour of the edgewise slope-limited recovery procedure let
us start with the investigation of one-dimensional pro�les. Each of the following academic
examples is designed so as to illustrate the de�ciencies of standard recovery procedures
per se. In contrast, the edgewise slope limited recovery outperforms its linear counterparts.
In the second part of this section, the new error indicator is applied to compressible inviscid

�ows at di�erent Mach numbers. In previous publications, the authors presented numerical
results for some of these benchmarks computed on �xed meshes in order to illustrate the
performance of modern high-resolution �nite element schemes based on the algebraic �ux
correction (AFC) paradigm. In this paper, emphasis is placed on grid adaptivity so that for
all simulations the same TVD type algorithm is utilized in conjunction with the moderately
di�usive CDS-limiter (	(�)= min(1; 2�)) applied to the characteristic variables. In contrast
to schemes of FCT type, the amount of arti�cial di�usion remaining after an upwind-biased
�ux limiter has been employed does not depend on the size of the time step. For a detailed
comparison of �ux limiting schemes of TVD and FCT type, the interested reader is referred
to References [6–8]. Since we only consider steady state �ows which call for a fully implicit
time discretization, i.e. the unconditionally stable backward Euler method, the time step should
be taken as large as possible in order to rapidly reach a converged solution. Grid adaptivity
only needs to be performed each time the �ow has ‘halfway’ converged which does not
increase the overall computational costs considerably. For all benchmarks, the error indicator
is applied to the density which serves as a key variable [52]. A nonconservative projection
scheme may be employed in order to transfer the old solution to the newly generated grid.

5.1. One-dimensional pro�les

Example 1
Let us start with the classical hat function given by

u(x)=

{
1− r0−1|x − x0|; x ∈ (0:3; 0:7)
0; x ∈ [0; 0:3] ∪ [0:7; 1]

(36)

where x0 = 0:5 and r0 = 0:2 as depicted in Figure 3. Obviously, the exact gradient (not dis-
played) exhibits three discontinuities at x∈ {0:3; 0:5; 0:7} and is constant elsewhere. The values
of the �nite element gradient �h which serve as upper=lower bounds are denoted by dots in
all plots of Figure 4. It can be clearly seen from diagram (a) that the high-order gradient
breaches the admissible bounds in the vicinity of the discontinuities and thus su�ers from
nonphysical oscillations. As depicted in (b), the gradient resulting from either the lumped
L2-projection or the discrete patch recovery, which yield indistinguishable results on uniform
meshes, is completely free of under- and overshoots. Obviously, it stays within the bounds
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Figure 3. One-dimensional hat function.

from the outset (see also remark (ii) in Reference [18]) but is less accurate. In contrast,
edgewise slope-limiting (c) combines the advantages of both techniques: high accuracy and
bounded results. Finally, the improved gradient �̂L computed directly by means of limited
averaging (16) of constant slope values �h is depicted in Figure 4(d). Remarkably, the results
recovered by the monotonized centred (MC) limiter very much resemble the edgewise slope
limited gradient �̂∗

MC in both accuracy and the fact, that no undershoots and overshoots take
place.

Example 2
Our next example deals with the normal distribution function

u(x)= (4��)−1e−(x−x0)
2=4� in [0; 1] (37)

where again x0 = 0:5. As can be seen from Figure 5, the solution pro�le (a) is smooth but
features strong gradients (b), two in�ection points and a local extremum. The parameter
�=0:005 is chosen such that the extrema of the gradient are located at x ∈ {0:4; 0:6}, where
the curvature of u changes its sign. Initially, the interval [0; 1] is uniformly discretized with
linear �nite elements of size h=0:1. In order to study the nodal rate of convergence, regular
subdivision is applied until the mesh size reaches h=0:0004.

The convergence of the consistent �nite element gradient �h (‘•’) and its recovered coun-
terparts are illustrated in Figure 6. From left to right, the absolute error has been measured at
the boundary x=0, at the local maximum x=0:4 and at the point x=0:7 located in a smooth
region. Since �h exhibits discontinuous jumps across element boundaries, we have always
chosen the value giving the maximum absolute error. At the boundary, only the discretely
recovered �̂ZZ exhibits superconvergence while the convergence rate of all other schemes de-
generates to O(h). Consistent L2-projection yields a slightly smaller error as compared to the
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Figure 4. One-dimensional hat function: Recovered gradients: (a) �̂MC ;
(b) �̂ML =�̂ZZ; (c) �̂

∗
MC ; and (d) �̂L.

rest of linearly converging methods. Due to the lack of appropriate bounds, no slope limiting
is performed at the boundary so that �̂∗

MC := �̂MC .
From Figure 6 (middle) we observe, that all schemes are at least superconvergent with

only negligible di�erences in terms of the absolute error at local extrema. Unfortunately,
the ultraconvergence of the consistent L2-projection does not carry over to its slope-limited
counterpart. Indeed, peak clipping is a well known phenomenon in the context of limiting
procedures [53] which can be attributed to the fact that the upper and lower bounds (15) are
too restrictive to preserve the accuracy of the original high-order scheme.
The nodal rate of convergence for smooth gradients is depicted in Figure 6 (right). Obvi-

ously, �h converges only linearly whereas the gradients resulting from discrete patch recovery,
lumped L2-projection and MC-limited averaging of constant slopes exhibit O(h2) convergence
rates. Furthermore, the ultraconvergence of �̂MC carries over to its slope limited counterpart
�̂∗
MC . It is noteworthy, that limited averaging of constant slopes yields results competitive to
those produced by discrete patch recovery for interior edges. This observation implies that
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Figure 5. One-dimensional Gaussian hill: (a) solution pro�le; and (b) exact gradient.
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Table I. Compression corner: comparison of error indicators
for �ref = 1%, �crs = 0:1%.

Grid1 Grid2 Grid3 Grid4 Grid5

�̂ZZ 1612 1877 2869 5000 9329
�̂∗
ZZ 1612 1830 2743 4815 8963
�̂ML 1612 1874 2831 4950 9242
�̂∗
ML 1612 1827 2738 4781 8888
�̂MC 1612 1699 2448 4238 7918
�̂∗
MC 1612 1705 2451 4221 7783

limited averaging techniques constitute a useful tool for cost e�ective gradient reconstruction
procedures which may be extended to the reconstruction of higher order derivatives.

5.2. 15◦ Converging channel

Let us proceed to the numerical treatment of the compressible Euler equations and employ the
presented error indicator to govern an adaptive mesh re�nement=coarsening procedure. As a
�rst benchmark we consider a supersonic �ow through a two-dimensional channel. The right
half of the bottom wall is sloped at 15◦ giving rise to the formation of an oblique shock. For
M∞=2:5 the inclination angle �=36:94◦ and the downstream Mach number M =1:87 can be
easily computed as explained in any textbook on oblique shock theory. A detailed description
of this so-called compression corner benchmark including numerical solutions computed by
the Wind-US code is available in the CFD Veri�cation and Validation Database of the
NPARC Alliance [54].
The initial coarse grid1 of 1612 linear triangles is presented in Figure 7(a). The grid

re�nement=coarsening procedure has been called each time the relative changes of the ‘halfway’
converged solution reached the square root of �=10−7. The adapted grids resulting from 4
iteration cycles are depicted in the diagrams (b)–(e). Here, the edgewise slope-limited gradient
values �̂∗

MC have been employed to steer the adaptation process with �ref = 1% and �crs = 0:1%.
The resulting Mach number distribution computed on the �nal grid5 is shown in Figure 7(e).
The thin shock wave is captured with an impressive accuracy and the inclination angle per-
fectly matches the theoretical value. The adapted numerical solution is even superior to the
one presented in Reference [9] which was computed on a boundary-�tted uniform mesh of
128× 128 bilinear elements by the less di�usive FEM–FCT algorithm making use of a smaller
time step.
The regular triangulations resulting from other error indicators ‘look’ quite similar to the

ones presented above and, hence, are not shown here. However, some di�erence in terms
of triangles can be observed from Table I. The number of �nite elements that constitute the
�nest grid for �̂ZZ exceeds that for �̂

∗
MC by as much as 20%. This moderate improvement may

be attributed to the very simple structure of the considered benchmark.

5.3. 5◦ Converging channel

Our next example is taken from Reference [39] and deals with multiple shock re�ections.
A supersonic �ow at M∞=2 enters a converging channel with the bottom wall sloped at
5◦ from the inlet. The initial triangulation was generated from a uniform mesh of 60× 16
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Figure 7. 15◦ Compression corner at M∞=2:5: (a) coarse grid1; (b) grid2;
(c) grid3; (d) grid4; (e) grid5; and (f) Mach number.

quadrilaterals by dividing each element into two triangles. Figure 8 shows the coarse grid as
well as a sequence of three re�nement=coarsening steps. Note how the �nest region con�nes
itself more and more to the vicinity of the shock as the adaptation proceeds. At the same
time, a multiply re�ected shock wave con�nes �ve zones of essentially uniform �ow in
which the mesh becomes increasingly coarsened. The normalized density distribution computed
on the �nest grid demonstrates the precise separation of �ve uniform zones as depicted in
Figure 8(e). The agreement of density and Mach number for the exact and the numerical
solution presented in Table II is amazing.
The crisp resolution of the re�ected shock wave can also be realized from the density

values on a slice through the grid presented in Figure 9. For unstructured meshes, a straight
line along y=0:6 is quite unlikely to match any of the grid points. In order to draw a fair
comparison between di�erent levels of re�nement, the coordinates of all intersection points of
edges and the prescribed cutline (y=0:6) have been computed. In a second step, the density
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Figure 8. 5◦ Converging channel at M∞=2: (a) coarse grid, 2048
cells; adapted grids: (b) 3503 cells; (c) 7194 cells; �nest grid:

(d) 15 664 cells; and (e) density distribution.
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Table II. Converging channel: solution values.

Exact Computed

	I 1.000 1.000
	II 1.216 1.216
	III 1.463 1.462
	IV 1.747 1.747
	V 2.081 2.079

MI 2.000 2.000
MII 1.821 1.821
MIII 1.649 1.651
MIV 1.478 1.479
MV 1.302 1.304
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Figure 9. Density cutlines at y=0:6.

values on the slice have been recovered by means of linear interpolation from adjacent nodes.
No additional error has been introduced during the visualization procedure, since P1-�nite
elements have been employed to approximate the solution which, consequently, varies linearly
along edges.
It can be clearly seen that the correct solution values in the interior are already obtained

on the coarsest grid. However, arti�cial di�usion passing through the �ux limiter smears the
shock wave across several elements and yields underpredicted density values at the out�ow.
Both the steepness of the ‘cascade’ and the correctness of the boundary values get greatly
improved as the adaptation process continues.
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6. CONCLUSIONS AND OUTLOOK

In this paper we focused on the reliability of gradient recovery procedures applied to dis-
continuous solutions. The local L2-error of the solution gradient has been decomposed into a
sum of edge contributions. Standard variational and discrete recovery techniques have been
revisited within an edge-based formulation and their applicability to solutions with steep
gradients has been questioned. Geometric constraints to be imposed on the high-order slopes
have been derived. In particular, the values of the consistent low-order �nite element gradient
provided natural upper and lower bounds. A slope limiter was invoked edge-by-edge so as to
correct the provisional gradient values resulting from linear interpolation of nodal data. Lim-
ited averaging procedures inspired by high-resolution �nite volume schemes were presented
as a promising alternative. They were utilized to compute smoothed gradient values at the
midpoints of edges directly from the adjacent consistent slopes. Moreover, the treatment of
boundary nodes=edges was addressed.
The performance of the new error indicators was demonstrated in one and two space di-

mensions. Algebraic �ux correction schemes [8] have been successfully equipped with adap-
tivity. The highly unstructured grids resulting from local re�nement call for the use of fully
implicit AFC methods which are unconditionally stable=positivity-preserving. However, it is
rather di�cult to march the resulting nonlinear system of equations to steady state on strongly
nonuniform meshes. Full multigrid (FMG) has been employed to compute the steady state
solution on the initial mesh. It could be worthwhile to employ a full approximation scheme
(FAS) to tackle the strong nonlinearity. In addition, the (nonlinear) TVD operator can be
constructed explicitly and used as a better preconditioner for the defect correction procedure
so as to improve the nonlinear rate of convergence.
Sophisticated mesh optimization techniques tailored to the peculiarities of algebraic �ux cor-

rection schemes will be considered in forthcoming publications. An algebraic approach to the
design of grid re�nement=coarsening strategies and mesh smoothing=optimization algorithms
constitutes an interesting direction for further research.
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